\(\int \frac {(a+b \sec (c+d \sqrt {x}))^2}{x^{3/2}} \, dx\) [59]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 22, antiderivative size = 22 \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\text {Int}\left (\frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}},x\right ) \]

[Out]

Unintegrable((a+b*sec(c+d*x^(1/2)))^2/x^(3/2),x)

Rubi [N/A]

Not integrable

Time = 0.03 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx \]

[In]

Int[(a + b*Sec[c + d*Sqrt[x]])^2/x^(3/2),x]

[Out]

Defer[Int][(a + b*Sec[c + d*Sqrt[x]])^2/x^(3/2), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 72.66 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.09 \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx \]

[In]

Integrate[(a + b*Sec[c + d*Sqrt[x]])^2/x^(3/2),x]

[Out]

Integrate[(a + b*Sec[c + d*Sqrt[x]])^2/x^(3/2), x]

Maple [N/A] (verified)

Not integrable

Time = 0.80 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.82

\[\int \frac {\left (a +b \sec \left (c +d \sqrt {x}\right )\right )^{2}}{x^{\frac {3}{2}}}d x\]

[In]

int((a+b*sec(c+d*x^(1/2)))^2/x^(3/2),x)

[Out]

int((a+b*sec(c+d*x^(1/2)))^2/x^(3/2),x)

Fricas [N/A]

Not integrable

Time = 0.28 (sec) , antiderivative size = 46, normalized size of antiderivative = 2.09 \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\int { \frac {{\left (b \sec \left (d \sqrt {x} + c\right ) + a\right )}^{2}}{x^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*sec(c+d*x^(1/2)))^2/x^(3/2),x, algorithm="fricas")

[Out]

integral((b^2*sqrt(x)*sec(d*sqrt(x) + c)^2 + 2*a*b*sqrt(x)*sec(d*sqrt(x) + c) + a^2*sqrt(x))/x^2, x)

Sympy [N/A]

Not integrable

Time = 1.96 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.91 \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\int \frac {\left (a + b \sec {\left (c + d \sqrt {x} \right )}\right )^{2}}{x^{\frac {3}{2}}}\, dx \]

[In]

integrate((a+b*sec(c+d*x**(1/2)))**2/x**(3/2),x)

[Out]

Integral((a + b*sec(c + d*sqrt(x)))**2/x**(3/2), x)

Maxima [N/A]

Not integrable

Time = 1.58 (sec) , antiderivative size = 718, normalized size of antiderivative = 32.64 \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\int { \frac {{\left (b \sec \left (d \sqrt {x} + c\right ) + a\right )}^{2}}{x^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*sec(c+d*x^(1/2)))^2/x^(3/2),x, algorithm="maxima")

[Out]

(4*b^2*sin(2*d*sqrt(x) + 2*c) + (d*cos(2*d*sqrt(x) + 2*c)^2*integrate(4*(b^2*sin(2*d*sqrt(x) + 2*c) + (a*b*d*c
os(2*d*sqrt(x) + 2*c)*cos(d*sqrt(x) + c) + a*b*d*sin(2*d*sqrt(x) + 2*c)*sin(d*sqrt(x) + c) + a*b*d*cos(d*sqrt(
x) + c))*sqrt(x))/((d*cos(2*d*sqrt(x) + 2*c)^2 + d*sin(2*d*sqrt(x) + 2*c)^2 + 2*d*cos(2*d*sqrt(x) + 2*c) + d)*
x^2), x) + d*integrate(4*(b^2*sin(2*d*sqrt(x) + 2*c) + (a*b*d*cos(2*d*sqrt(x) + 2*c)*cos(d*sqrt(x) + c) + a*b*
d*sin(2*d*sqrt(x) + 2*c)*sin(d*sqrt(x) + c) + a*b*d*cos(d*sqrt(x) + c))*sqrt(x))/((d*cos(2*d*sqrt(x) + 2*c)^2
+ d*sin(2*d*sqrt(x) + 2*c)^2 + 2*d*cos(2*d*sqrt(x) + 2*c) + d)*x^2), x)*sin(2*d*sqrt(x) + 2*c)^2 + 2*d*cos(2*d
*sqrt(x) + 2*c)*integrate(4*(b^2*sin(2*d*sqrt(x) + 2*c) + (a*b*d*cos(2*d*sqrt(x) + 2*c)*cos(d*sqrt(x) + c) + a
*b*d*sin(2*d*sqrt(x) + 2*c)*sin(d*sqrt(x) + c) + a*b*d*cos(d*sqrt(x) + c))*sqrt(x))/((d*cos(2*d*sqrt(x) + 2*c)
^2 + d*sin(2*d*sqrt(x) + 2*c)^2 + 2*d*cos(2*d*sqrt(x) + 2*c) + d)*x^2), x) + d*integrate(4*(b^2*sin(2*d*sqrt(x
) + 2*c) + (a*b*d*cos(2*d*sqrt(x) + 2*c)*cos(d*sqrt(x) + c) + a*b*d*sin(2*d*sqrt(x) + 2*c)*sin(d*sqrt(x) + c)
+ a*b*d*cos(d*sqrt(x) + c))*sqrt(x))/((d*cos(2*d*sqrt(x) + 2*c)^2 + d*sin(2*d*sqrt(x) + 2*c)^2 + 2*d*cos(2*d*s
qrt(x) + 2*c) + d)*x^2), x))*x - 2*(a^2*d*cos(2*d*sqrt(x) + 2*c)^2 + a^2*d*sin(2*d*sqrt(x) + 2*c)^2 + 2*a^2*d*
cos(2*d*sqrt(x) + 2*c) + a^2*d)*sqrt(x))/((d*cos(2*d*sqrt(x) + 2*c)^2 + d*sin(2*d*sqrt(x) + 2*c)^2 + 2*d*cos(2
*d*sqrt(x) + 2*c) + d)*x)

Giac [N/A]

Not integrable

Time = 0.37 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.91 \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\int { \frac {{\left (b \sec \left (d \sqrt {x} + c\right ) + a\right )}^{2}}{x^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*sec(c+d*x^(1/2)))^2/x^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*sqrt(x) + c) + a)^2/x^(3/2), x)

Mupad [N/A]

Not integrable

Time = 13.54 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00 \[ \int \frac {\left (a+b \sec \left (c+d \sqrt {x}\right )\right )^2}{x^{3/2}} \, dx=\int \frac {{\left (a+\frac {b}{\cos \left (c+d\,\sqrt {x}\right )}\right )}^2}{x^{3/2}} \,d x \]

[In]

int((a + b/cos(c + d*x^(1/2)))^2/x^(3/2),x)

[Out]

int((a + b/cos(c + d*x^(1/2)))^2/x^(3/2), x)